Sharp inequalities via truncation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Isoperimetric Inequalities via the Abp Method

We prove some old and new isoperimetric inequalities with the best constant using the ABP method applied to an appropriate linear Neumann problem. More precisely, we obtain a new family of sharp isoperimetric inequalities with weights (also called densities) in open convex cones of R. Our result applies to all nonnegative homogeneous weights satisfying a concavity condition in the cone. Remarka...

متن کامل

Sobolev Inequalities: Symmetrization and Self Improvement via Truncation

We develop a new method to obtain symmetrization inequalities of Sobolev type. Our approach leads to new inequalities and considerable simplification in the theory of embeddings of Sobolev spaces based on rearrangement invariant spaces.

متن کامل

Sharp Boundary Trace Inequalities

This paper describes sharp inequalities for the trace of Sobolev functions on the boundary of a bounded region Ω ⊂ R . The inequalities bound (semi-)norms of the boundary trace by certain norms of the function and its gradient on the region and two specific constants kρ and kΩ associated with the domain and a weight function. These inequalities are sharp in that there are functions for which eq...

متن کامل

Sharp Jackson inequalities

For trigonometric polynomials on [− , ] ≡ T , the classical Jackson inequalityEn(f )p C r (f, 1/n)p was sharpened by M. Timan for 1<p<∞ to yield n−r { n ∑ k=1 ksr−1Ek(f )p }1/s C r (f, n−1)p where s =max(p, 2). In this paper a general result on the relations between systems or sequences of best approximation and appropriate measures of smoothness is given. Approximation by algebraic polynomials...

متن کامل

SHARP AFFINE Lp SOBOLEV INEQUALITIES

In this paper we prove a sharp affine Lp Sobolev inequality for functions on R. The new inequality is significantly stronger than (and directly implies) the classical sharp Lp Sobolev inequality of Aubin [A2] and Talenti [T], even though it uses only the vector space structure and standard Lebesgue measure on R. For the new inequality, no inner product, norm, or conformal structure is needed at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2003

ISSN: 0022-247X

DOI: 10.1016/s0022-247x(02)00465-1